TD : Complexes

Feuille d'accompagnement

Exercice 4

> seq(abs((1+I)^(2*i)),i=0..6);

1, 2, 4, 8, 16, 32, 64

> seq(argument((1+I)^(2*i)),i=0..6);

0, 1/2*Pi, Pi, -1/2*Pi, 0, 1/2*Pi, Pi

> j:=exp(2*I*Pi/3);

j := -1/2+1/2*I*3^(1/2)

> seq(abs((1+j)^(2*i)),i=0..6);

1, 1, 1, 1, 1, 1, 1

> seq(argument(evalc((1+j)^(2*i))),i=0..6);

0, 2/3*Pi, -2/3*Pi, 0, 2/3*Pi, -2/3*Pi, 0

> z:=(1-I*sqrt(3))/(1+I);

> evalc(z^1515);

z := (1/2-1/2*I)*(1-I*3^(1/2))

758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...

> abs(");argument("");

758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...

1/4*Pi

> (sqrt(2))^1515;

758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...
758065474756205534740712640850831325809026375545262...

> z_4:=simplify(evalc((1+I*tan(alpha))^2/(1+(tan(alpha))^2)));

z_4 := -(-1+tan(alpha)^2-2*I*tan(alpha))/(1+tan(alp...

> abs(z_4),argument(z_4);

abs((-1+tan(alpha)^2-2*I*tan(alpha))/(1+tan(alpha)^...

> alpha:=Pi/1789;

alpha := 1/1789*Pi

> simplify((abs(z_4))),argument(evalc(z_4));

1, arctan(2*tan(1/1789*Pi)/(1-tan(1/1789*Pi)^2))

Je n'ai pas réussi à faire mieux... mais on connait bien ses formules trigo...

> z6:=(1+sin(theta)+I*cos(theta))/(1+sin(theta)-I*cos(theta));

z6 := (1+sin(theta)+I*cos(theta))/(1+sin(theta)-I*c...

> evalc(z6);

(1+sin(theta))^2/((1+sin(theta))^2+cos(theta)^2)-co...

> simplify(");

sin(theta)+I*cos(theta)

Exercice 6

> expand(cos(3*theta)*sin(6*theta));

128*cos(theta)^8*sin(theta)-224*cos(theta)^6*sin(th...

Exercice 7

> seq(combine(cos(theta)^(2*p),trig),p=0..5);

1, 1/2*cos(2*theta)+1/2, 1/8*cos(4*theta)+1/2*cos(2...
1, 1/2*cos(2*theta)+1/2, 1/8*cos(4*theta)+1/2*cos(2...
1, 1/2*cos(2*theta)+1/2, 1/8*cos(4*theta)+1/2*cos(2...

> seq(combine(cos(theta)^(2*p+1),trig),p=0..5);

cos(theta), 1/4*cos(3*theta)+3/4*cos(theta), 1/16*c...
cos(theta), 1/4*cos(3*theta)+3/4*cos(theta), 1/16*c...
cos(theta), 1/4*cos(3*theta)+3/4*cos(theta), 1/16*c...
cos(theta), 1/4*cos(3*theta)+3/4*cos(theta), 1/16*c...

> seq(combine(sin(theta)^(2*p),trig),p=0..5);

1, 1/2-1/2*cos(2*theta), 3/8+1/8*cos(4*theta)-1/2*c...
1, 1/2-1/2*cos(2*theta), 3/8+1/8*cos(4*theta)-1/2*c...
1, 1/2-1/2*cos(2*theta), 3/8+1/8*cos(4*theta)-1/2*c...

> seq(combine(sin(theta)^(2*p+1),trig),p=0..5);

sin(theta), -1/4*sin(3*theta)+3/4*sin(theta), 1/16*...
sin(theta), -1/4*sin(3*theta)+3/4*sin(theta), 1/16*...
sin(theta), -1/4*sin(3*theta)+3/4*sin(theta), 1/16*...
sin(theta), -1/4*sin(3*theta)+3/4*sin(theta), 1/16*...

Exercice 9

> toto:=cos(Pi/11)+cos(3*Pi/11)+cos(5*Pi/11)+cos(7*Pi/11)+cos(9*Pi/11);

toto := cos(1/11*Pi)+cos(3/11*Pi)+cos(5/11*Pi)-cos(...

> combine(toto,trig);

cos(1/11*Pi)+cos(3/11*Pi)+cos(5/11*Pi)-cos(4/11*Pi)...

> evalf(toto);

.5000000002

Ce n'est pas une preuve, mais c'est convaincant...

Exercice 10

> solve(z^2=2+I);

(2+I)^(1/2), -(2+I)^(1/2)

Tout taupin surpris à écrire cela sera trucidé : les auteurs de Maple savent ce qu'ils disent en racontant cela; le taupin (en général) non.

> evalc({"});

{1/2*(4+2*5^(1/2))^(1/2)+1/2*I*(-4+2*5^(1/2))^(1/2)...

> solve(z^2=4*I-3);

-1-2*I, 1+2*I

> solve(z^2=8*I-15);

-1-4*I, 1+4*I

> solve(z^2=9+40*I);

5+4*I, -5-4*I

Exercice 11

> s1:=solve(27*(z-I)^6-(z+I)^6);

s1 := 2*I+I*3^(1/2), 2*I-I*3^(1/2), -12/13+8/13*I+3...
s1 := 2*I+I*3^(1/2), 2*I-I*3^(1/2), -12/13+8/13*I+3...

gloups...

> seq(simplify(evalc(I*(1/sqrt(3)*exp(k*I*Pi/3)+1)/(1-1/sqrt(3)*exp(k*I*Pi/3)))),k=0..6);

-I*(3+3^(1/2))/(-3+3^(1/2)), (3-2*I)/(-4+3^(1/2)), ...

> simplify({"});

{(3+2*I)/(4+3^(1/2)), -I*(-3+3^(1/2))/(3+3^(1/2)), ...

> r:=simplify(evalc(I*(1/sqrt(3)*exp(I*Pi/3)+1)/(1-1/sqrt(3)*exp(I*Pi/3))));

r := (3-2*I)/(-4+3^(1/2))

> radsimp(",'ratdenom');

(-3/13+2/13*I)*(4+3^(1/2))

> expand(");

-12/13+8/13*I-3/13*3^(1/2)+2/13*I*3^(1/2)

> s2:=seq(expand(radsimp(simplify(evalc(I*(1/sqrt(3)*exp(k*I*Pi/3)+1)/(1-1/sqrt(3)*exp(k*I*Pi/3)))),'ratdenom')),k=0..6);

s2 := 2*I+I*3^(1/2), -12/13+8/13*I-3/13*3^(1/2)+2/1...
s2 := 2*I+I*3^(1/2), -12/13+8/13*I-3/13*3^(1/2)+2/1...

Ouf...

> evalb({s1}={s2});

true

Cette vérification n'était pas inutile : dans un premier temps, une erreur s'était glissée dans mon calcul...

Exercice 12

> solve((I-1)*z^3-(5*I-11)*z^2-(43+I)*z+9+37*I=0);

I, 3+4*I, 5-2*I

Exercice 13

> solve(z^4+z^3+z^2+z+1=0);

1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5+5^(1/2))^(1/2), -1...
1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5+5^(1/2))^(1/2), -1...

Sans intérèt...

> solve(x^2+x-1);

1/2*5^(1/2)-1/2, -1/2-1/2*5^(1/2)

> evalf({"});

{.6180339890, -1.618033989}

> evalf(2*cos(2*Pi/5));

.6180339890

Exercice 14

> j:=exp(2*I*Pi/3);

j := -1/2+1/2*I*3^(1/2)

> solve({x+y+z=a,x+j*y+j^2*z=b,x+j^2*y+j*z=c},{x,y,z});

{x = 1/3*a+1/3*b+1/3*c, z = 1/3*a-1/6*b-1/6*c-1/6*I...

> x;

x

> assign("");

> x,y,z;

1/3*a+1/3*b+1/3*c, 1/3*a-1/6*b-1/6*c+1/6*I*3^(1/2)*...

> Im(y);

1/6*Im(2*a-b-c+I*3^(1/2)*c-I*b*3^(1/2))

> assume(a,real):assume(b,real):assume(c,real):

> Im(y);

1/6*3^(1/2)*c-1/6*b*3^(1/2)

> solve({Im(x)=0,Im(y)=0,Im(z)=0});

{b = c, c = c}