Fractions rationnelles
Accompagnement - corrigé

Exercice 1

1.1

> convert(1/(X^4+1),parfrac,X);

1/(X^4+1)

> convert(1/(X^4+1),parfrac,X,sqrt(2));

-1/4*(-2+2^(1/2)*X)/(X^2-2^(1/2)*X+1)+1/4*(2+2^(1/2...

> convert(1/(X^4+1),parfrac,X,{I,sqrt(2)});

(1/4-1/4*I)*2^(1/2)/(2*X+2^(1/2)-I*2^(1/2))+(-1/4+1...

> ?alias

> alias(alpha=RootOf(X^4+1));

I, alpha

> convert(1/(X^4+1),parfrac,X,{alpha});

1/4*alpha^3/(X+alpha^3)-1/4*alpha^3/(X-alpha^3)+1/4...

> convert(1/(X^4-1),parfrac,X);

1/4/(X-1)-1/4/(X+1)-1/2/(X^2+1)

> alias(beta=RootOf(X^4+1));

I, alpha, beta

> convert(1/(X^4-1),parfrac,X,{beta});

-1/4*alpha^2/(X+alpha^2)+1/4*alpha^2/(X-alpha^2)+1/...

1.2

> convert(1/(1+X+X^2),parfrac,X);

1/(X^2+X+1)

> alias(j=RootOf(X^2+X+1));

I, alpha, beta, j

> convert(1/(1+X+X^2),parfrac,X,{j});

-1/3*(2*j+1)/(X-j)+1/3*(2*j+1)/(X+1+j)

> convert(1/(X^8-1),parfrac,X,sqrt(2));

1/8*(-2+2^(1/2)*X)/(X^2-2^(1/2)*X+1)-1/8*(2+2^(1/2)...

> alias(omega=RootOf(X^8-1));

I, alpha, beta, j, omaga, omega

> convert(1/(X^8-1),parfrac,X,{omega});

Error, (in evala) reducible RootOf detected. Substitutions are, {RootOf(_Z^8-1) = -1, RootOf(_Z^8-1) = RootOf(_Z^2+1), RootOf(_Z^8-1) = RootOf(_Z^4+1), RootOf(_Z^8-1) = 1}

> factor(X^8-1);

(X-1)*(X+1)*(X^2+1)*(X^4+1)

> convert(1/(X^8-1),parfrac,X,{alpha});

1/8*alpha^3/(X-alpha^3)-1/8*alpha^3/(X+alpha^3)-1/8...
1/8*alpha^3/(X-alpha^3)-1/8*alpha^3/(X+alpha^3)-1/8...

1.3

> convert(1/(X^2-2*cos(theta)+1),parfrac,X);

1/(X^2-2*cos(theta)+1)

> alias(alpha=RootOf(X^2-2*cos(theta)+1));

Error, (in RootOf) expression independent of, _Z

> alias(alpha=RootOf(X^2-2*cos(theta)+1,X));

I, alpha, beta, j, omaga, omega

> convert(1/(X^2-2*cos(theta)+1),parfrac,X,{alpha});

Error, (in factor) 2nd argument is not a valid algebraic extension, {RootOf(_Z^2-2*cos(theta)+1)}

Mouais...

Exercice 2

> convert(1/((X^2-1)*(X^2+1)^2),parfrac,X);

1/8/(X-1)-1/8/(X+1)-1/4/(X^2+1)-1/2/(X^2+1)^2

> convert(1/((X+1)^3*(X^2+X+1)^2),parfrac,X);

1/(X+1)^3+2/(X+1)^2+1/(X+1)-(X+2)/(X^2+X+1)-1/(X^2+...

Sur C ca donnerait...

> alias(j=RootOf(X^2+X+1));

I, alpha, beta, j, omaga, omega

> convert(1/((X+1)^3*(X^2+X+1)^2),parfrac,X,{j});

-1/9*(13*j+11)/(X+1+j)+1/3/(X+1+j)^2+1/9*(13*j+2)/(...
-1/9*(13*j+11)/(X+1+j)+1/3/(X+1+j)^2+1/9*(13*j+2)/(...

> F:=n->n!/product(X+k,k=1..n);

F := proc (n) options operator, arrow; n!/product(X...

> for n from 1 to 8 do print(convert(F(n),parfrac,X)) od;

1/(X+1)

2/(X+1)-2/(X+2)

3/(X+1)-6/(X+2)+3/(X+3)

4/(X+1)-12/(X+2)+12/(X+3)-4/(X+4)

5/(X+1)-20/(X+2)+30/(X+3)-20/(X+4)+5/(X+5)

6/(X+1)-30/(X+2)+60/(X+3)-60/(X+4)+30/(X+5)-6/(X+6)...

7/(X+1)-42/(X+2)+105/(X+3)-140/(X+4)+105/(X+5)-42/(...

8/(X+1)-56/(X+2)+168/(X+3)-280/(X+4)+280/(X+5)-168/...

> seq(binomial(8,k),k=1..8);

8, 28, 56, 70, 56, 28, 8, 1

> seq(k*binomial(8,k),k=1..8);

8, 56, 168, 280, 280, 168, 56, 8

> convert((X^5+2)/(X^2+X+1)^3,parfrac,X);

(1-X)/(X^2+X+1)^3+(3+X)/(X^2+X+1)^2+(X-2)/(X^2+X+1)...

Sur C...

> convert((X^5+2)/(X^2+X+1)^3,parfrac,X,{j});

1/9*(j+5)/(X+1+j)+1/9*(2*j-11)/(X+1+j)^2-1/3*j/(X+1...
1/9*(j+5)/(X+1+j)+1/9*(2*j-11)/(X+1+j)^2-1/3*j/(X+1...

Exercice 3

> ?T

> T(2,X);

T(2,X)

> with(orthopoly);

[G, H, L, P, T, U]

> T(2,X);

2*X^2-1

> seq(convert(1/T(n,X),parfrac,X),n=1..5);

1/X, 1/(2*X^2-1), -1/3/X+4/3*X/(4*X^2-3), 1/(8*X^4-...

Ca ne peut rien donner de mieux...
En fait, Tn est de degré n, coefficient dominant 2^(n-1), et vérifie Tn(cos(theta))=cos((n+1)theta) pour tout theta, donc Tn admet n racines simples (lesquelles précisément ?). Il suffit ensuite de calculer des résidus...

Exercice 4

On écrit P = K*product((X-z[k])^alpha[k],k = 1 .. n) . F=P'/P vaut alors sum(alpha[k]/(X-z[k]),k = 1 .. n)

Considérons maintenant une racine z de P' : si c'est une racine de P, c'est fini. Sinon, on peut évaluer F en z , ce qui donne la relation : sum(alpha[k]/(z-z[k]),k = 1 .. n) =0, soit encore : sum(alpha[k]/(abs(z-z[k])^2)*(z-z[k]),k = 1 .. n) =0

Ainsi, si a lambda[k] = alpha[k]/(abs(z-z[k])^2) (qui est un réel >0), la relation sum(lambda[k]*(z-z[k]),k = 1 .. n) =0 se traduit géométriquement par le fait que le point d'affixe z est barycentre des points d'affixes z[k] : gagné.

Exercice 5

> convert((X^2+X+1)/((X^2-1)*(X^2+1)),parfrac,X);

3/4/(X-1)-1/4/(X+1)-1/2*X/(X^2+1)

> convert(X/(X^4+X^2+1),parfrac,X);

-1/2/(X^2+X+1)+1/2/(X^2-X+1)

Exercice 6

> convert(7/((X+1)^7-X^7-1),parfrac,X);

1/X-1/(X+1)-1/(X^2+X+1)-1/(X^2+X+1)^2

Vous vous attendiez à aussi simple ?