Maths PCSI Exercices

Espaces euclidiens

On pourra jeter un œil interessé à la feuille de travail Maple...Les exos seront traités dans l'ordre

EXERCICE 1 Trouver la borne inférieure, pour $(a, b) \in \mathbb{R}^2$, de

$$\int_0^{\pi} (\cos t - (at + b))^2 dt.$$

EXERCICE 2 Dans \mathbb{R}^3 euclidien, orthonormaliser la base $\mathcal{F}=(f_1,f_2,f_3)$, avec $f_1=(1,1,1), f_2=(1,-1,1)$ et $f_3=(1,0,0)$.

Exercice 3 (*) Polynômes de Legendre

On munit $E = \mathbb{R}_n[X]$ du produit scalaire $\langle P|Q \rangle = \int_{-1}^1 P(t)Q(t)dt$.

1. Montrer qu'il existe une unique base orthonormée $(P_k)_{0 \le k \le n}$ échelonnée en dégré, dont les coefficients dominants sont > 0.

Dans toute la suite, on pose

$$\forall k \in \llbracket 0, n
rbracket, \qquad Q_k = \frac{d^k}{dX^k} ((X^2 - 1)^k).$$

- 2. Donner le degré et le coefficient dominant de P_k .
- 3. Si $k \in [0, n]$, montrer que Q_k admet k racines simples dans]-1,1[. On pourra s'intéresser aux racines (simples et multiples) de $(X^2-1)^k$, puis de ses dérivées successives
- 4. Montrer que la famille $(Q_k)_{0 \le k \le n}$ est orthogonale. On pourra montrer que Q_k est orthogonal à $\mathbb{R}_{k-1}[X]$ en intégrant p fois par parties $\langle X^p | Q_k \rangle$, où $p \in [0, k-1]$.
- 5. En déduire que pour tout $k \in [0, n]$, il existe $\lambda_k \in \mathbb{R}^*$ tel que $Q_k = \lambda_k P_k$.

Les P_k sont les "polynômes de Legendre". Parfois, on désigne plutôt par Q_k le k-ème polynôme de Legendre, ce qui n'a guère d'importance puisque ces deux polynômes sont proportionnels...

On va voir dans l'exercice suivant que la propriété des n racines simples constatée pour les polynômes de Legendre est en fait systématique pour les polynômes orthogonaux associés à un produit scalaire intégral.

Exercice 4 (*) Racines des polynômes orthogonaux

 φ désigne ici une application continue à valeurs strictement positives sur un segment [a,b] (a < b). n est un entier strictement positif.

1. Montrer qu'on définit bien un produit scalaire sur $E = \mathbb{R}_n[X]$ en posant :

$$\forall P,Q \in E, \qquad <\!\!P|Q\!\!> = \int_a^b PQ\varphi.$$

2. Montrer qu'il existe une unique base de $E(P_k)_{0 \le k \le n}$ échelonnée en dégré, orthogonale, et constituée de polynômes unitaires.

3. Montrer que chaque P_k admet exactement k racines simples dans]a,b[. On pourra raisonner par l'absurde, noter x_1,\ldots,x_r les racines de P_k de multiplicité impaire incluses dans]a,b[, puis considérer $< P_k|Q>$, où $Q=(X-x_1)\ldots(X-x_r)$, après avoir justifié le fait que $r \leq k$.

EXERCICE 5 E désigne \mathbb{R}^4 muni de sa structure euclidienne usuelle. F désigne l'ensemble des quadruplets de réels (a,b,c,d) tels que a+b+c+d=0 et a+2b+3c+4d=0. Vérifier que F est un sous-espace de E; déterminer sa dimension, une base orthogonale de F et de F^{\perp} , et enfin, donner la matrice dans la base canonique de la symétrie orthogonale par rapport à F.

EXERCICE 6 Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale sur $D = \mathbb{R}(1, -2, 1)$.

Trace de la matrice obtenue?

EXERCICE 7 Déterminer la matrice dans la base canonique de \mathbb{R}^4 de la réflexion orthogonale par rapport à l'hyperplan $H = \ker \varphi$, où $\varphi(x_1, x_2, x_3, x_4) = x_1 + x_3$.

Trace de la matrice obtenue?

Exercice 8 (*)

Montrer que $O_n(\mathbb{R}) \cap \mathcal{M}_n(\mathbb{Z})$ est fini, et déterminer son cardinal.

EXERCICE 9 Soient p et q deux projections orthogonales de E euclidien. Montrer que $p \circ q = 0$ si et seulement si $q \circ p = 0$.

On pourra noter que si r est une projection orthogonale, alors $\operatorname{Im} r = (\ker r)^{\perp}$.

Exercice 10 (*)

Soit p une projection d'un espace vectoriel euclidien E tel que pour tout $x \in E$, $||p(x)|| \le ||x||$. Montrer que p est une projection orthogonale.

On pourra supposer que $\operatorname{Im} f \neq (\ker f)^{\perp}$, et chercher y tel que ||p(y)|| > ||y||.

Exercice 11 (*)

Soient a,b des vecteurs fixés dans un espace euclidien E de dimension $n \ge 2$. On s'intéresse à la fonction $\varphi: x \in E \setminus \{0\} \mapsto \frac{\langle a|x\rangle \langle b|x\rangle}{\|x\|^2}$.

- 1. Montrer que φ est bornée.
 - φ admet donc sur $E \setminus \{0\}$ des bornes supérieures et inférieures finies S et I, que l'on va déterminer (on va même montrer que ce sont des extrema, ce qu'on pourrait faire a priori, mais avec des arguments d'analyse un peu élaborés pour de jeunes Jedi).
- 2. Si a et b sont positivement liés, montrer que S = ||a|| ||b|| et I = 0. Traiter également le cas où a et b sont "négativement liés".
 - Dans la suite, on suppose (a, b) libre, on note F le plan Vect(a, b), et ψ la restriction de φ à $F \setminus \{0\}$.
- 3. Montrer que tout vecteur de F peut s'écrire $(\rho\cos\theta)a+(\rho\sin\theta)b$ pour un certain $\rho>0$ et $\theta\in[0,2\pi]$; en déduire que ψ admet un maximum M>0 et un minimum m<0, puis déterminer m et M.
- 4. Montrer que S = M et I = m.

Exercice 12 (*)

Montrer:

• qu'il existe un unique polynôme $P_0 \in \mathbb{R}_{1515}[X]$ tel que :

$$\forall Q \in \mathbb{R}_{1515}[X], \qquad Q(0) = \int_{-512}^{1024} Q(t)P_0(t)dt;$$

 $\bullet\,$ qu'il n'existe pas de polynôme $R_0\in\mathbb{R}[X]$ tel que :

$$\forall Q \in \mathbb{R}[X], \qquad Q(0) = \int_0^1 Q(t)R_0(t)dt$$

• qu'il n'existe pas de fonction continue $\varphi_0 \in \mathcal{C}([0,1],\mathbb{R})$ telle que :

$$\forall f \in \mathcal{C}([0,1],\mathbb{R}), \qquad f(0) = \int_0^1 f(t)\varphi_0(t)dt.$$

Par l'absurde : on montrera que si φ_0 répondait au problème, on aurait $\varphi(t_0) = 0$ pour tout $t \in [0,1]$ puis pour tout $t \in [0,1]$.

Exercice 13 (**) Adjoint d'un endomorphisme

1. Soit u un endomorphisme d'un espace euclidien E. Montrer qu'il existe un unique endomorphisme v de E tel que :

$$\forall x, y \in E, \quad \langle u(x)|y \rangle = \langle x|v(y) \rangle.$$

v s'appelle l'adjoint de u, et est noté u^* .

- 2. Déterminer u^* lorsque u est une homothétie, une projection orthogonale ou une symétrie orthogonale.
- 3. Que dire de $(\lambda u_1 + u_2)^*$? Le prouver soigneusement!
- 4. Soit \mathcal{B} une base orthonormale. Si $U = Mat_{\mathcal{B}}(u)$, montrer : $Mat_{\mathcal{B}}(u^*) = {}^tU$.