Notions de base

Exercice 1

- $\forall (x, y) \in \mathbb{R}^2, \quad x < y \implies f(x) \le f(y);$
- $\ \forall (x, y) \in \mathbb{R}^2, \qquad x < y \implies f(x) < f(y);$
- $-\exists (x,y) \in \mathbb{R}^2; \quad x < y \text{ et } f(x) > f(y);$
- $-\exists (x,y) \in \mathbb{R}^2; \quad x < y \text{ et } f(x) \ge f(y).$

Exercice 2

 \Longrightarrow est évident.

 $\Leftarrow=:$ on suppose $X\cup Y=X\cap Y$; on montre soigneusement $X\subset Y.$ Pour $Y\subset X,$ on le refait soigneusement ou bien on dit "de même".

Exercice 3

$$\mathcal{P}(\{2,3\}) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}, \text{puis } \mathcal{P}\big(\mathcal{P}(\{2,3\})\big) \text{ contient } 2^4 = 16 \text{ \'el\'ements, dont } \emptyset, \{\emptyset\}, \big\{\{2\}\big\}, \big\{\emptyset, \{2,3\}\big\} \dots$$

Exercice 4

- Si X est élément de $\mathcal{P}(A)\cup\mathcal{P}(B)$: ou bien $X\in\mathcal{P}(A)$, et alors $X\subset A$, donc $X\subset A\cup B$, et $X\in\mathcal{P}(A\cup B)$; ou bien $X\in\mathcal{P}(B)$, et on arrive à la même conclusion! On a donc $\mathcal{P}(A)\cup\mathcal{P}(B)\subset\mathcal{P}(A\cup B)$ Bien entendu, si A=B, l'autre inclusion est vérifiée; mais ce n'est pas le cas en général : si on prend $A=\{1,2\}, B=\{3,4\}$, et $X=\{1,3\}$, alors $X\in\mathcal{P}(A\cup B)$ mais $X\notin\mathcal{P}(A)\cup\mathcal{P}(B)$.

Exercice complémentaire : montrer qu'il y a égalité si et seulement si A = B.

- On montrera cette fois l'égalité $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. Faire soigneusement les deux inclusions.

Exercice 5

- $-f(\mathbb{R}) = [-1,1]; f^{-1}(\mathbb{R}) = \mathbb{R};$
- $f([0, \pi/2]) =]0, 1];$
- $-f^{-1}(1) = \{2k\pi \mid k \in \mathbb{Z}\}, \text{ que l'on } note \ 2\pi\mathbb{Z};$
- $-f^{-1}(]-1,2[)=\mathbb{R}\setminus\{(2k+1)\pi\,|\,k\in\mathbb{Z}\}\,;$
- $-f([0,\pi]) = [-1,1] \operatorname{donc} f^{-1}(f([0,\pi])) = \mathbb{R}$
- $-f([0,\pi/2]) = [0,1]$ donc $f^{-1}(f([0,\pi/2]))$ est constitué de la réunion des intervalles de la forme $[-\pi/2 + 2k\pi, \pi/2 + 2k\pi]$, pour $k \in \mathbb{Z}$:

$$f^{-1}(f([0,\pi/2])) = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right].$$

Exercice 6

- \subset : soit $y \in f(A \cap f^{-1}(B))$. Il existe $x \in A \cap f^{-1}(B)$ tel que f(x) = y. $x \in A$ donc $y = \in f(A)$; et $x \in f^{-1}(B)$ donc $y = f(x) \in B$. Ainsi $y \in f(A) \cap B$.
- ⊃ : soit $y \in f(A) \cap B$. Puisque $y \in f(A)$, il existe $x \in A$ tel que y = f(x). Maizalors $f(x) = y \in B$, donc $x \in f^{-1}(B)$. Ainsi, $x \in A \cap f^{-1}(B)$, puis $y \in f(A \cap f^{-1}(B))$.

Exercice 7

– Par une étude de fonction de type terminale¹, on voit que f_1 induit une bijection décroissante de \mathbb{R}^- sur[-1,1[et une bijection croissante de \mathbb{R}^+ sur [-1,1[. f_1 est donc non injective (f(-1)=f(1)) et non surjective (1515 n'a pas d'antécédent).

l'écriture $f(x) = 1 - \frac{2}{x^2 + 1}$ permet d'ailleurs de faire cette étude "à vue"

- On FIXE $(X,Y) \in \mathbb{R}^2$ (celui de droite!) et on CHERCHE $(x,y) \in \mathbb{R}^2$ tel que $f_2(x,y) = (X,Y)$, c'est à dire $\begin{cases} 2x + 3y = X \\ x + 2y = Y \end{cases}$ On montre que ce système est **EQUIVALENT** à $\begin{cases} x = -3Y + 2X \\ y = 2Y X \end{cases}$ Le sens ⇒ assure qu'il n'y a qu'une seule solution (EVENTUELLE!). Le sens ⇐ assure que si l'on prend x = -2Y + 2X et y = 2Y X, alors on a bien X = 2x + 3y et Y = x + 2y. Ainsi, (X,Y) admet un unique antécédent, et f_2 est bijective.
- Supposons $f_3(x_1,y_1)=f_3(x_2,y_2)$, alors $2^{x_1}(2y_1+1)=2^{x_2}(2y_2+1)$. Supposons dans un premier temps $x_1 \ge x_2$; on récupère alors $2^{x_1-x_2}(2y_1+1)=2y_2+1$. Or, le membre de droite est toujours impair, donc $x_1-x_2=0$, par suite $y_1=y_2$. Le raisonnement avec $x_1 \le x_2$ conduit au même résultat. Finalement $(x_1,y_1)=(x_2,y_2)$ et f_3 est injective. La surjectivité est plus délicate. On fixe $n \in \mathbb{N}$, et il s'agit de montrer qu'il existe $(x,y) \in \mathbb{N}^2$, tel que $n=2^x(2y+1)-1$, soit encore (astuce!) $n+1=2^x(2y+1)$. Notons x la puissance de 2 dans la décomposition de n+1 en facteurs premiers. On a alors $n+1=2^xz$ avec z impair, donc de la forme 2y+1 pour un certain $y \in \mathbb{N}$; d'où la surjectivité.
- $-f_4$ est visiblement injective, par contre elle n'est pas surjective car 0 n'a pas d'antécédent.
- f_5 n'est pas injective : f(0) = f(1); elle est surjective (un antécédent de $n \in \mathbb{N}$ est n+1).
- $f_5 \circ f_4 = \text{Id}_{\mathbb{N}}$ est une bijection; $f_4 \circ f_5$ n'est pas injective (f(0) = f(1)) et pas surjective (0 n'a pas d'antécédent).

Exercice 8

- $-\Longrightarrow$: Supposons f injective. L'inclusion $A\subset f^{-1}(f(A))$ est générale (voir le cours ; elle n'utilise pas l'injectivité de f). Pour l'inclusion inverse, fixons $x\in f-1(f(A))$ alors $f(x)\in f(A)$ donc il existe $z\in A$ tel que f(x)=f(z). Par injectivité de f, on récupère x=z donc $x\in A$. \Longleftrightarrow : Supposons que pour tout $A\subset E$, $A=f^{-1}(f(A))$. Supposons également f(x)=f(y). Alors avec
 - Esupposons que pour tout $A \subset E$, $A = f^{-1}(f(A))$. Supposons egalement f(x) = f(y). Alors avec $A = \{x\}$, on obtient $f^{-1}(f(\{x\})) = \{x\}$. Or $f(y) = f(x) \in f(\{x\})$, soit $y \in f^{-1}(f(\{x\})) = \{x\}$ donc, finalement, y = x, et f est injective.
- ⇒ : Supposons f surjective. L'inclusion $f(f^{-1}(B)) \subset B$ est générale (voir le cours ; elle n'utilise pas la surjectivité de f). Pour l'inclusion inverse, prenons $y \in B$. Comme f est surjective, il existe $x \in E$ tel que f(x) = y. Puisque $f(x) \in B$, on a $x \in f^{-1}(B)$, et finalement $y \in f(f^{-1}(B))$.
 - \Leftarrow : Supposons que pour tout $B \subset F$, $B = f^{-1}(f(B))$ et fixons $y \in F$. $B = \{y\}$ fournit $f(f^{-1}(\{y\})) = \{y\}$. Il existe donc $x \in f^{-1}(\{y\})$ tel que f(x) = y, et f est surjective.
- ⇒ : Supposons f injective. L'inclusion $f(A \cap B) \subset f(A) \cap f(B)$ est vraie pour toute fonction (on n'utilise pas l'injectivité). Pour obtenir l'autre inclusion, on fixe $y \in f(A) \cap f(B)$, alors $y \in f(A)$ fournit l'existence de x_1 dans A, tel que $f(x_1) = y$ et $y \in f(B)$ celle de x_2 dans B, tel que $f(x_2) = y$. L'injectivité de f fournit alors $x_1 = x_2 = x \in A \cap B$ et donc $y = f(x) \in f(A \cap B)$.
 - \Leftarrow : Supposons que pour tout $A, B \subset E$, $f(A \cap B) = f(A) \cap f(B)$. Prenons $x_1 e q x_2$ dans E. On a alors $\{x_1\} \cap \{x_2\} = \emptyset$. Avec $A = \{x_1\}$ et $B = \{x_2\}$, on obtient $\emptyset = f(\{x_1\}) \cap f(\{x_2\})$ d'où $f(x_1) e q f(x_2)$, et l'injectivité suit.

Exercice 9

Notations : $f: E \to F$ et $g: F \to G$

Supposons $g(y_1) = g(y_2)$. Comme f est surjective, il existe (x_1, x_2) dans E^2 , tels que $f(x_1) = y_1$ et $f(x_2) = y_2$) Donc $g(f(x_1)) = g(f(x_2))$ d'où $(g \circ f$ étant injective), $x_1 = x_2$, puis $y_1 = f(x_1) = f(x_2) = y_2$, et g est injective.

Exercice 10

Notations : $f: E \to F, g: F \to G, h: G \to H$

D'après le cours, $g \circ f$ injective implique f injective, et $g \circ f$ surjective implique g surjective. Le même raisonnement sur $h \circ g$ donne aussitôt g injective et h surjective. D'où g bijective et donc $g^{-1} \circ (g \circ f) = f$ aussi. La composition de $h \circ g$ par g^{-1} à droite fournit la bijectivité de h.

Exercice 11

– Si $A \not\subset B$, alors il n'existe pas de partie X telle que $A \cup B = B$ (pourquoi?).

- Si $A \subset B$, alors $(B \setminus A) \cup Y$ où $Y \subset A$ convient. Réciproquement, supposons $A \cup X = B$, et posons $Y = X \cap A$. Alors d'une part $X \subset (B \setminus A) \cup Y$ (un élément de X est aussi un élément de Y), et d'autre part $(B \setminus A) \cup Y \subset X$ (car un élément de $(B \setminus A) \cup Y$ est soit un élément de Y, donc de X, soit un élément de $B \setminus A$, donc de X). Donc $X = (B \setminus A) \cup Y$.

Finalement, les parties cherchées sont les $(B \setminus A) \cup Y$, où Y décrit $\mathcal{P}(A)$.

Exercice 12

- Supposons f injective, et fixons un élément $x_0 \in E$. Soit $y \in F$: il a 0 ou 1 antécédent par f. Dans le premier cas, on pose $g(y) = x_0$ (en fait, n'importe quel élément de E), et dans le second cas, on pose g(y) = l'antécédent de y par f.
 - Il est alors immédiat de vérifier que pour tout $x \in E$, on a g(f(x)) = x (en effet, f(x) a un antécédent par f...qui est x).
- Si f est surjective et $y \in F$, il suffit de prendre pour g(y) UN des antécédents de y par f (il en existe bien au moins un, par surjectivité de f).

Exercice 13

- 1. Supposons $A \cup BeqE$: il existe $x_0 \in E$ qui n'est ni dans A ni dans B. On a alors $f(\{x_0\}) = (\emptyset, \emptyset)$ $f(\emptyset)$, et f n'est pas injective. Par la contraposée, on vient de montrer que si f est injective, alors $A \cup B = E$.
 - Réciproquement, supposons $A \cup B = E$. Si $f(X_1) = f(X_2)$, alors $X_1 \cap A = X_2 \cap A$ et $X_1 \cap B = X_2 \cap B$. Mais on a (pourquoi?):

$$X_1 = (X_1 \cap A) \cup (X_1 \cap B) = (X_2 \cap A) \cup (X_2 \cap B) = X_2,$$

et f est injective.

2. De même, on montrera que f est surjective si et seulement si $A \cap B = \emptyset$.

Exercice 14

- Prenons un élément de $(E \cup F) \times G$: il est de la forme (h,g), avec $h \in E \cup F$ et $g \in G$. Si $h \in E$, alors $(h,g) \in E \times G$ donc a fortiori $(h,g) \in (E \times G) \cup (F \times G)$. Sinon, on a nécessairement $h \in F$, et alors $(h,g) \in F \times G$ puis $(h,g) \in (E \times G) \cup (F \times G)$. Ainsi : $(E \cup F) \times G \subset (E \times G) \cup (F \times G)$. Réciproquement, considérons un élément de $(E \times G) \cup (F \times G)$: il est ou bien de la forme (e,q) avec $e \in E$ et $g \in G$, ou bien de la forme (f,g) avec $f \in F$ et $g \in G$. Dans les deux cas, il est dans $(E \cup F) \times G$. Ainsi, $(E \times G) \cup (F \times G) \subset (E \cup F) \times G$, et il y a égalité des deux ensembles. – On montrera de même : $(E \cap F) \times G = (E \times G) \cap (F \times G)$.

Exercice 15

Les deux ensembles sont non homogènes!!!

 $\mathcal{P}(E \times F)$ est un ensemble constitué d'ensembles de couples, alors que $\mathcal{P}(E) \times \mathcal{P}(F)$ est un ensemble constitué de couples d'ensembles...

On aura donc du mal à prouver la moindre inclusion!

Exercice 16

Comment construire une application Φ de $X^{Y \times Z}$ dans $(X^Y)^Z$? Déjà en FIXANT un élément de $X^{Y \times Z}$ (on va l'appeler f), et en essayant de construire un élément de $(X^Y)^Z$, qu'on appelera g (on posera alors $\Phi(f) = g$).

Qu'est-ce qu'un élément de $(X^Y)^Z$? Une application de Z dans X^Y . Il convient donc de définir g(z), pour tout $z \in Z$.

On va donc fixer $z \in Z$. g(z) doit être un élément de X^Y , donc une fonction de Y dans X. Pour la définir, il faut donc fixer y, et définir (g(z))(y). Que pourrait-on prendre comme élément de X??? Au fait, f est une application de $Y \times Z$ dans X: on peut donc essayer de prendre (g(z))(y) = f(y,z), qui est bien dans X. On définit ainsi g(z) pour tout z, donc g.

A chaque élément f de $X^{Y \times Z}$, on peut donc associer un élément $\Phi(f)$ de $(X^Y)^Z$. Φ est donc une application de $X^{Y \times Z}$ dans $(X^Y)^Z$.

On laisse au lecteur le soin de montrer que cette application est bijective.

On distinguera bien la partie injectivité de la partie surjectivité; on donnera des noms pertinents aux objets, en se posant toujours les questions : quelle est la nature de cet objet? qu'est-ce qui est fixé à cet instant précis? comment montrer l'égalité de deux objets de cette nature?

Note: les informaticiens frimeurs appellent Φ l'opérateur de Curryfication.

Exercice 17

Supposons qu'il existe une surjection φ de X dans $\mathcal{P}(X)$, et considerons $Y_0 = \{y \in X \mid y \notin \varphi(y)\}$. Y_0 est une partie de X, donc est de la forme $\varphi(y_0)$ pour un certain $y_0 \in X$ (surjectivité de φ). Maintenant :

- si $y_0 \in Y_0$, alors $y_0 \notin \varphi(y_0)$ (définition de Y_0), donc $y_0 \notin Y_0$: contradiction, et ainsi on n'a pas $y_0 \in Y_0$;
- − si $y_0 \notin Y_0$, alors $y_0 \in \varphi(y_0)$ (définition de Y_0), donc $y_0 \in Y_0$: contradiction, et ainsi on n'a pas $y_0 \notin Y_0$. Ainsi, $y_0 \in Y_0$ est impossible, de même que $y_0 \notin Y_0$: cela pose problème...et nous fournit la contradiction souhaitée.