TD : Réels


Feuille d'accompagnement

Exercice 2

> plot(3*x^2+26*x+35,x=-9..0);

[Maple Plot]

> solve(3*x^2+26*x+35>=0);

RealRange(-infinity,-7), RealRange(-5/3,infinity)

Exercice 3

> p:=n->product(1+k/n^2,k=1..n);

p := proc (n) options operator, arrow; product(1+k/...

> p(20);

56228461925150085771401017338588941931079023/335544...

> evalf(%);

1.675738750

> seq(evalf(p(i)),i=1..50);

2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...
2., 1.875000000, 1.810699588, 1.774291992, 1.751113...

> evalf(exp(1/2));

1.648721271

> product(1+k/n^2,k=1..n);

GAMMA(n^2+n+1)*(1/(n^2))^(n+1)/GAMMA(n^2+1)*n^2

> limit(product(1+k/n^2,k=1..n),n=infinity);

exp(1/2)

Je suis terrassé...

Exercice 8

> seq(evalf(cos(n)),n=0..50);

1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...
1., .5403023059, -.4161468365, -.9899924966, -.6536...

> min(seq(evalf(cos(n)),n=0..10)),max(seq(evalf(cos(n)),n=0..10));

-.9899924966, 1.

> min(seq(evalf(cos(n)),n=0..100));

-.9999608264

> min(seq(evalf(cos(n)),n=0..1000));

-.9999999995

> Digits:=20;

Digits := 20

> min(seq(evalf(cos(n)),n=0..10000));

-.99999999954565898017

> min(seq(evalf(cos(n)),n=0..100000));

-.99999999954565898017