Retour
type rbarre=Real | Left | Right | Plusinfinity | Minusinfinity;;
let intro b c="Fixons "^
(match c with
| Real -> "eps>0. "
| Left -> "eps>0. "
| Right -> "eps>0. "
| Plusinfinity -> "M dans R. "
| Minusinfinity -> "M dans R. ")
^(string_of_char (char_of_int 10))^(string_of_char (char_of_int 10))
^"Puisque g(x) tend vers "^
(match c with
| Real -> "c"
| Left -> "c-"
| Right -> "c+"
| Plusinfinity -> "+infini "
| Minusinfinity -> "-infini ")
^" lorsque x tend vers "^
(match b with
| Real -> "b"
| Left -> "b-"
| Right -> "b+"
| Plusinfinity -> "+infini "
| Minusinfinity -> "-infini ")
^", il existe "^
(match b with
| Real -> "alpha>0"
| Left -> "alpha>0"
| Right -> "alpha>0"
| Plusinfinity -> "X réel"
| Minusinfinity -> "X réel")
^" tel que pour tout x dans "^
(match b with
| Real -> "[b-alpha,b+alpha]"
| Left -> "[b-alpha,b["
| Right -> "]b,b+alpha]"
| Plusinfinity -> "[X,+infini["
| Minusinfinity -> "]-infini,X]")^
", on a g(x) dans "^
(match c with
| Real -> "[c-eps,c+eps]"
| Left -> "[c-eps,c["
| Right -> "]c,c+eps]"
| Plusinfinity -> "[M,+infini[ "
| Minusinfinity -> "]-infini,M]")^".";;
let intermediaire a b c="Mais f(t) tend vers "^
(match b with
| Real -> "b"
| Left -> "b-"
| Right -> "b+"
| Plusinfinity -> "+infini "
| Minusinfinity -> "-infini ")
^" lorsque t tend vers "^
(match a with
| Real -> "a"
| Left -> "a-"
| Right -> "a+"
| Plusinfinity -> "+infini "
| Minusinfinity -> "-infini ")
^", donc il existe "^
(match a with
| Real -> "rho>0"
| Left -> "rho>0"
| Right -> "rho>0"
| Plusinfinity -> "T réel"
| Minusinfinity -> "T réel")
^" tel que pour tout t dans "^
(match a with
| Real -> "[a-rho,a+rho]"
| Left -> "[a-rho,a["
| Right -> "]a,a+rho]"
| Plusinfinity -> "[T,+infini["
| Minusinfinity -> "]-infini,T]")^
", on a f(t) dans "^
(match b with
| Real -> "[b-alpha,b+alpha]"
| Left -> "[b-alpha,b["
| Right -> "]b,b+alpha]"
| Plusinfinity -> "[X,+infini["
| Minusinfinity -> "]-infini,X]")^
", donc g(f(t)) dans "^
(match c with
| Real -> "[c-eps,c+eps]"
| Left -> "[c-eps,c["
| Right -> "]c,c+eps]"
| Plusinfinity -> "[M,+infini[ "
| Minusinfinity -> "]-infini,M]")^".";;
let conclusion a c="On vient donc de montrer que pour tout "^
(match c with
| Real -> "eps>0"
| Left -> "eps>0"
| Right -> "eps>0"
| Plusinfinity -> "M dans R"
| Minusinfinity -> "M dans R")
^", il existe "^
(match a with
| Real -> "rho>0"
| Left -> "rho>0"
| Right -> "rho>0"
| Plusinfinity -> "T réel"
| Minusinfinity -> "T réel")
^" tel que pour tout t dans "^
(match a with
| Real -> "[a-rho,a+rho]"
| Left -> "[a-rho,a["
| Right -> "]a,a+rho]"
| Plusinfinity -> "[T,+infini["
| Minusinfinity -> "]-infini,T]")^
", on a g(f(t)) dans "^
(match c with
| Real -> "[c-eps,c+eps]"
| Left -> "[c-eps,c["
| Right -> "]c,c+eps]"
| Plusinfinity -> "[M,+infini[ "
| Minusinfinity -> "]-infini,M]")
^" : c'est exactement ce qu'il fallait démontrer.";;
#open "sys";;
let preuve a b c file_name=
let file_out=open_out (file_name^".txt") in
begin
output_string file_out (intro b c);
output_char file_out `\n`;
output_char file_out `\n`;
output_string file_out (intermediaire a b c);
output_char file_out `\n`;
output_char file_out `\n`;
output_string file_out "----------";
output_char file_out `\n`;
output_char file_out `\n`;
output_string file_out (conclusion a c);
close_out file_out
end;;
chdir "c:/mesdoc~1/PCSI/cours_~1/analyse/continuite/Preuves";
preuve Real Real Real "rrr";;
preuve Real Plusinfinity Left "rpg";;
preuve Plusinfinity Right Minusinfinity "pdm";;
let tab_rbarre=[|Real;Left;Right;Plusinfinity;Minusinfinity|]
and tab_noms=[|"r";"g";"d";"p";"m"|];;
let create_files () =
for a=0 to 4 do for b=0 to 4 do for c=0 to 4 do
preuve (tab_rbarre.(a)) (tab_rbarre.(b)) (tab_rbarre.(c))
((tab_noms.(a))^(tab_noms.(b))^(tab_noms.(c)))
done done done;;
create_files ();;